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REGULAR EVENT PROCESSING AND MACHINE LEARNING
CORRECTNESS VERIFICATION

Currently the concepts of Event Driven Architecture and Machine Learning become widely used in the information
systems. In the paper the authors propose an approach to combine these two concepts to be able to overcome logical
complexity in the design of the information systems based on Event Driven Architecture. The paper considers some
machine learning method for the component of the system based on this architecture using rigorous mathematical for-
mulations. In particular, a problem for the method correctness verification is studied. The algorithms and steps for the

computer experiments are introduced in details. Finally, further research directions are proposed.
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Introduction

In today's Information Technology world, many
applications are reactive in the sense that they respond
to the detection of events. These applications exist in
many domains and are very useful for data processing.
Sometimes these applications should be able to react
not to a single event but to the sequences of events. In
this case a Complex Event Processing (CEP) approach
is used [6]. Usually such data processing systems de-
sign is based on the Event Driven Architecture (EDA).
Mathematical fundamentals to analyze component be-
haviour of EDA based systems can be found in the
papers [1, 9, 10]. The practically important class of
event detectors for systems built on EDA has been
defined and considered in [2].

While the event types usually are known, in most
cases it is impossible to determine all their combina-
tions during system design and development. As a result
the processing system is unable to generate a proper
reaction on the event combinations that were not taken
into account during its design. To overcome this prob-
lem the machine learning methods can be used to make
a processing system adaptable during runtime. Machine
learning explores the study and construction of algo-
rithms that can learn from and make predictions on data
[5]. Such algorithms operate by building a model from
an example training set of input observations in order to
make data-driven predictions or decisions expressed as
outputs rather than following strictly static program
instructions.

Machine learning is employed in a range of com-
puting tasks where designing and programming explicit
algorithms is unfeasible. Also it is sometimes conflated
with data mining,[7] where the latter sub-field focuses
more on exploratory data analysis and is known as un-
supervised learning [3]. In the paper we are considering a
learning method for a component of the EDA based
system and describing in details correctness verification
procedure for the method.

1. Basic Notation and Definitions

In this section the CEP-machine model proposed in
[9] is described. We will consider subclass of
CEP-machines called a Regular CEP-machine developed
in [2]. Below we will use the following notation:

f:X—P v denotes that f is a partial map-

ping from X into Y ;

f(x) T denotes that f(x) is not defined for the
member x of X;

f(x) ¥ denotes that f(x) is defined for the mem-
ber x of X;

f(x)4=y denotes that f(x)¥ and y=f(x) for
the member y of Y ;

¢ denotes the empty (zero-length) sequence;

X" denotes the set of all non-empty finite se-
quences composed of elements of X ;

X* denotes the set {8}UX+ ;

X® denotes the set of all infinite sequences com-
posed of elements of X;

X* denotes the set X' JX® ;
|x| denotes the length of the finite sequence x ;

x[0] denotes the first element of a finite or infinite

sequence X ;
x[l :] denotes the sequence obtained by removing
the first element of the sequence x .
Let us start from some basic definitions needed to
describe the mathematical model of a CEP-machine:
Definition 1. Define a finite set X that is called
an alphabet and its elements are called symbols. Further,

we will call a set L  X* a language in this context.
The symbols are interpreted as a prime messages that
inform about the corresponding elementary events that have
happened. Some of these finite symbol sequences carry
information about the complex events. Below we will call
these sequences as events. In contrast, other finite symbol
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sequences do not carry information about any complex
event. Below we will call them words.

The sets of Complex Events should respect the cer-
tain conditions. The most important one is that any
stream of elementary events is uniquely subdivided into a
series of complex events by directed viewing the stream
from left to right. This condition leads to the following
definition.

Definition 2. Let L be a language with the al-
phabet X then L is prefix- free if for any ue L and

ve X" the assumption uvel implies the equality
v=¢g.

Now let us fix that any set of complex events re-
lated to the system are prefix-free. Next, let us briefly
recall the principal idea of the used model.

Definition 3. (Regular handler). A handler

hext Pl yois called regular if there exist

— some finite set Z with the marked element
zg €Z and

— some mapping §:ZxX—>Z| Y

such that for any ue X™ and ye Y the condition
h(u)d=y is fulfilled iff there exist 2y 2yl € V4

such that
Ziy1 =8(zi,u[i]) for 0£i<|u|—1 and

y= S(Z‘u‘_] ,u [|u| —1}) .

In this case we say that the handler h is realized by
the triple (Z,z,,9) .

Definition 4. (Regular CEP-machine Struc-
ture). Any Regular CEP- machine is a quintuple
M= (X,Y,H,hy,a) with the following constituents:

— the finite set that is alphabet of atomic mes-
sages X;

— the finite set that is alphabet of machine re-
sponses Y respectively;

— the finite set of regular handlers H;

— the initial handler hy e H;

— the response function a: Y —> H.

The Algorithm 1 determines behaviour of any
Regular CEP-machine.

Algorithm 1. Operational model of a Regular
CEP-machine

1 defrun(M,s):
the studied Regular CEP-machine
M=(X,Y,H,hy,0) and some stream of elementary

Require:

events s € X®.
Ensure : printing of the corresponding response
stream
2 handler, buff = h,[]

3 while True:
4 new _event,s = s[0],s[1:]

buff.append(new _event)
if handler(buff) T: continue

else:
response = handler (buff)

O 0 9 N W

print(response) # printing of the
current response
10 handler, buff = a(response),[]

2. Regular CEP-machine
Learning Method

In this section we recall a concept of the machine
learning method that was proposed in the authors pre-
vious paper [11]. The Regular CEP- machine learning
problem can be decomposed into series of the Regular
Handler learning problems. Since each Regular Handler
has only one possible response "accepted", below we will
call it "a regular acceptor". Therefore, a Regular Ac-
ceptor learning problem can be formulated in the fol-
lowing way.

Problem. Let E={u;,..,uy} < X" be a finite

prefix-free set of events and C = {vy,..,vy} < X" be a
finite set of words such that EﬂC = then we interpret

elements of set E as examples and elements of set C as
counterexamples;
we need to regular

find a acceptor
partial

h: Xt 22 sfaccepted} such that the following
conditions are fulfilled:

1. h(y) d=accepted forall 0<i<M;

2. h(v;) T forall 0<i<N;and

3. The regular acceptor is minimal. Namely, the
corresponding set Z has the least number of elements
among all possible.

Now let us discuss the interrelation between regular
acceptors and finite state machines. In particular, con-

sider for any regular acceptor Xt P v that
realized by the triple (Z,z),8) the machine

(Q = ZUY{qtrap}axsg: QXX - quO = ZO!Qaccept = Y)
Qtrap £ ZUY

g(qmp,x)zqtrap for any xeX and yeY then the

and

where S(ys X)=Agap

regular language accepted by this machine coincides
with the set of events accepted by the regular acceptor.
General automata theory guarantees that the built ma-
chine can be uniquely minimized without changing lan-
guage that is accepted by the machine. Note, that the
corresponding minimal machine has only one
non-acceptable state q such that 3(q,x)=q for any
x € X . This state is called the trap and denoted as trap .
Further, we require 6(q,x)=trap for any acceptable

state q and any x € X. Now we can describe the pro-
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posed learning method. The general view of the method
to generate an acceptor is defined by Alg. 2. This method
defines the series of redirections for acceptor transitions
leading into the trap starting with the minimal acceptor
for the set of examples.

Algorithm 2. Specification of the learning method

1 def learning method(E,C):

Require: the finite prefix-free set of events E
Ensure: the required acceptor

2 do that:

3 initiate the learning process by applying
function init to the set E and denoting the result by
acceptor # initialize the set of transitions that cannot be
redirected

4 frozen _transitions = set()

5 while halting condition is not fulfilled:

6 do that:

7 modify acceptor by redirecting a

transition leading into the trap and minimize the re-
sulting acceptor if the redirected transition is not in
frozen _transitions

8 do that:

9 check that acceptor is admissible in
the sense that it does not accept any word from C

10 if the checking is successful: continue

11 else:

12 do that:

13 roll-back the modification and add

the redirected transition into frozen _transitions

The algorithm uses two functions: init - that gen-
erates initial acceptor using a set of examples E; and
modify - that modifies the acceptor so that it "learns" a
new event.

These functions are specified separately.

To complete the specification of the learning
method the algorithms for the function init (see item 3
of Alg. 2) and for function modify (seeitem 7 of Alg. 2)
need to be described.

To generate the minimal initial acceptor with the
init function the following algorithm is used:

1. states of the acceptor are defined recursively as
special sets of words;

2. we choose the set E as z;, andadditto Z;

3. we choose the empty set as trap ;

4. if for x e X in E there is not a word with the
first symbol x then assign 8(z(,x)=trap else the set

fueX* |xueE} addto Z;

5. repeat recursively this consideration for all
member of Z until Z is stabilized;

6. denote the set {¢} by accepted.

The acceptor obtained in this manner is assigned as
result of the function init.

The function modify is developed using the fol-
lowing algorithm:

1. Define z=12z, set of acceptable events and
w e X" anew word will be learned by the acceptor.

2. while w#¢:

3. add an event w if not exists into z

4. x,w=w[0],w[l:]

5. If exists a transition x for the pair (z,z, € Z)

then z=1z, . where z, ={ueX+|Vvez:V=xu} is a
set of suffixes obtained from the set z by removing
symbol x.

6. Else if exists a set of suffixes z,, € Z such that
w ez, then for the pair (z,z,) if not in fro-
zen_transitions add a transition marked by x and set
z=12,

7. Else add anew state z,o,, €Z:Z,., ={W} and
for the pair (2,7, ) add a transition marked by x and

set Z=Zow

8. Done

To select a transition for redirection we use the fol-
lowing simple remark: the minimal regular acceptor has at
most one state that is an attractor, i.e. any transition that
goes out from this state has it as a target. Moreover, if this
acceptor accepts a finite language then the existence of the
attractor is guaranteed. Further, to minimize the new ac-
ceptor we use standard Hopcroft's algorithm [4].

3. Learning Method
Correctness Verification

In this section we present in details an experiment to
verify validity of the Regular Acceptor learning method.
The Alg. 3 specifies the schema of the experiment. The
key point in the verification procedure is a test_acceptor
random generation. Later this acceptor is used to define
the sets of examples E and counterexamples C.

Algorithm 3. The schema of the computer ex-
periment

1 for inrange(given number of experiments):

2 do that:

3 | generate
test_acceptor

4 do that:

5 | generate randomly sets E and C using
test_acceptor

6 acceptor' = learning_method(E , C)

7 do that:

8 I compare acceptor' and test_acceptor

To generate this test acceptor at first we generate a
syntactic tree of the regular expressions and then convert it
to the regular acceptor. To implement the mentioned ex-
perimental schema we use language Python with libraries
"scipy" and "numpy" [8]. Particularly, all random choices
have been provided by the standard function random.choice
contained in the library "numpy".

randomly a regular acceptor
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To randomly generate a regular expression the fol-
lowing schema has been used.
Data structures: two data structures are used to
generate a regular expression, namely,
1. the following dictionary (in the terms of language
Python) is used to hold constant data
model frame = {
'tokens': ( # this tuple contains a list of
# used tokens
),
'functors': (# this tuple contains operations
# and their arities
('star', 1),# Kleene's star
("concatenation’, 2)),
('union', 2)
)
H

2. The following recursive structure is used to rep-
resent the syntactic tree of a regular expression.

expression = token

| (functor, expression, ...)

where number of expressions after a functor equals
an arity of this functor.

For example, only one expression follows the
functor "star".

One can see that an expression is represented by a
tree. Each leaf of this tree is marked by a token and each
internal node of the tree is marked by a functor. More-
over, the number of children for an internal node equals
the arity of the corresponding functor.

Schema of tree random generation: the recur-
sive structure of the syntactic tree that represents some
regular expression indicates the way of this tree random
generation (see Alg. 4).

Algorithm 4. A tree random generation

1 defcreate tree(depth = 0):

2 global model frame

3 do that:

4 | decide whether the tree root is an internal node
or a leaf

5 if the tree root is a leaf:

6 do that:

7 | choose randomly token

8 return token

9 else:

10 do that:

11 | choose randomly functor

12 arity, temp = model frame[ 'functors' ][
functor ][1], [functor]

13 for _in range(arity) :
temp.append(create_tree(h+1))

14 return tuple(temp)

To make decision whether the root of the current
subtree is an internal node or a leaf (item 4 of Alg. 4) we
propose to use the following function p(n), that deter-

mines the conditional probability to mark the current

node as internal if its depth is equal to n if 0<n<p or
ifn>p”

1—(n/p)2/2, 0<n<p
exp(1-n/p)/2, n>p.

The described generation method provides con-
structing well-balanced syntactic trees, but it does not
control presence of disbalance for marking. Therefore, to
correct possible disbalances we propose the next way to
perform item 7 and item 11 of Alg. 4: to use a standard
function random.choice, which is contained in the
package "random" of the library "numpy", for choice an

p(n) =

item from the list [i,i,,...,1, ] under the condition that

probability to choose ij is inversely proportional to
number of the realizations for this choice. This correction
ensures the "uniformness" of distribution for markings of
leaves and internal nodes.

Now, the  following called
TransformSyntaxTreeToFSM(tree) can be used to con-

procedure

vert a syntactic tree to the finite state machine. Next, the
obtained finite state machine can be transformed to the
regular acceptor by joining all acceptable states.

1. if SyntaxTreeNode.GetType() == leaf then:

(a) symbol = SyntaxTreeNode.GetValue();
(b) FSM.AddStartState(qq)) ;
(¢) FSM.AddTer minalState(qgympor) ;

(d)
(e) Return FSM;

2. else if SyntaxTreeNode.GetType = 'star' then:
(a) childNode = SyntaxTreeNode.GetChild() ;
(b) FSM = TransformSyntaxTree ToFSM(childNode) ;

(c¢) for each terminal arrow
arrow € FSM.GetAllTer min alArrows() :

(d) arrow.replaceEndStateTo(q) ;

FSM.AddArrow(q,symbol, dgymbol ) 5

(e) end for each loop;

(f) Return FSM ;

3. else if SyntaxTreeNode.GetType ="union' then:

(a) childNode; = SyntaxTreeNode.GetChild(0) ;

(b) childNode; = SyntaxTreeNode.GetChild(1) ;

(c) subFSM, =
TransformSyntaxTreeToFSM(childNode) ;

(d) subFSM; =
TransformSyntaxTreeToFSM(childNode, ) ;

(e) FSM = Merge(subFSM,subFSM;);

(f) Return FSM);

4. else if
SyntaxTreeNode.GetType == 'concatenation’' then:

(a) childNode(, = SyntaxTreeNode.GetChild(0) ;

(b) childNode; = SyntaxTreeNode.GetChild(1) ;
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(c) subFSM,, =
TransformSyntaxTreeToFSM(childNode)) ;

(d) subFSM; =
TransformSyntaxTreeToFSM(childNode, ) ;

(e) FSM = Concatenate(subFSM,,,subFSM; ) ;

() Return FSM ;

Note the Merge() operation merges two finite state
machines starting from initial states and removing du-
plicate arrows. Where as a Concatenate() operation

simply concatenates all terminal states of the first finite
state machine with the initial state of the second one.

The results of the more than 10,000 experiments
have shown that for a randomly generated acceptor with
the obtained sets E and C, the presented method of
learning was restoring this acceptor using these sets.

Thus, we can assume that the proposed method is
precise on regular acceptors. The last assumption can be
considered as evidence in favour of the validity of the
proposed method of machine learning.

Conclusion

In the paper a Regular CEP-machine learning
method and its correctness verification procedure were
considered. It was shown that this method can be used
during design and development of the systems based on
Event Driven Architecture. The advantage of this method
is needlessness of all possible event combinations
analysis. Instead the system can adapt it self during run-
time. The computer experiment based on the correctness
validation procedure shows that the method restores
tested Regular CEP-machine.

The obtained results make need for further research
in the following directions:

- future experimental study of the proposed
method in order to clarify the boundaries of its applica-
bility;

- finding rigorous formulations of the method
convergence conditions;

- mathematical justification of the method;

- evaluation of the effectiveness of the
method
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Penensent: n-p texs. Hayk, npod. I.A. Kyuyk, XapkiBcbkuii
HauioHaynsHUH yHiBepcurer Ilositpsax Cui iM. IBana Koxe-
ny6a, XapkiB.

PErYNnsiPHA OBPOBKA NMoAIA TA BEPUDIKALIA BIPHOCTI METOIB MALLMHHOIO HABYAHHSA
I''M. XKonrkesuy, B.B. [lopoxkuncekuii, A.B. Xaniko

Cv0200Hi maxi Konyenyii K apximexmypa Keposana nooisAMu ma MawluHie HA8YAHHs 8Ce Hacmiule GUKOPUCTMOBYIOMbCS
niouac po3pobxu ingopmayiinux cucmem. Y cmammi asmopamu 3anpononoganuil nioxio 00 nocOHaHHs yux 080X KOHYenyiil ol
po38'a3anns npobremu 102i4HOI CKIAOHOCE NPOEKMYBAHHS CUCIEM, wjo 0a3yiomvcs Ha apximekmypi Keposaniti nodismu. Bu-
KOPUCMOGYIOWU YimKi MAMEMAMUYHI (POPMYTIOBANHS, Y CIMAMIMI PO32IAHYIMO MEMOO MAWUHHO20 HABYAHHS KOMNOHEHMIE MaKUX
cucmem. 30Kkpema Oocaioxcyemuvcs npobrema eepugpixayii npasunvhocmi memody. Okpecneni HANPAMKU NOOANbLUIO2O OOCIi-
OJHCEHHSL.

Knrouogi cnosa: mawunne nasuanns, o6pobra nodiil, akyenmop, pe2yniapna mosa, besnpegixcha mosa.

PEFYNAPHAA OEPABOTKA COBbITUA U BEPUOUKALMA MPABUIIbLHOCTHU
METOOOB MALLWHHOIO OBYYEHUA

I'.H. XKonrkesuy, B.B. [lopoxunckuii, A.B. Xanukos

B nacmosujee gpemsi makue KOHYenyuu Kax apXumexkmypa Ynpagusiemas coOblmuamu u MauiuHHoe o6yyeHue ece yauje
UCNONB3VIOMCA 8 UHOPMAYUOHHBIX cucmemax. B cmamwve asmopwl npednazarom nooxoo obwvedunsowuil 5mu 08e KOHYenyuu ol
peuienusi npodneMbl 102UHECKOT CLOACHOCMU NPOEKMUPOBAHUS, CUCTEM OCHOBANHBIX HA APXUMEKMYpPe YNPAGIAeMOU COOLIMUAMU.
Hcnonw3ya cmpoeue mamemamuyeckue GopmyauposKu, paccmMampusaemes Memoo MawuHHo20 06yUeHsi KOMROHEHMNO8 MAKUx
cucmem. B uacmnocmu, uzynaemcs npobnema eepuduxayuu npasunvhocmu memooa. IIpednazaromes nanpaenenusi ons 0aib-
Hellue20 UCc1e008aHusl.

Knrouesvie cnosa: mawunnoe obyuenue, oopabomxa cobvimuil, akyenmop, pezynaphblil A3vik, becnpeghyuKcHblil 3bIK.
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