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Currently the concepts of Event Driven Architecture and Machine Learning become widely used in the information 

systems. In the paper the authors propose an approach to combine these two concepts to be able to overcome logical 
complexity in the design of the information systems based on Event Driven Architecture. The paper considers some 
machine learning method for the component of the system based on this architecture using rigorous mathematical for-
mulations. In particular, a problem for the method correctness verification is studied. The algorithms and steps for the 
computer experiments are introduced in details. Finally, further research directions are proposed. 

 
Keywords: Machine Learning, Event Processing, acceptor, regular language, prefix-free language 
 

Introduction 
In today's Information Technology world, many 

applications are reactive in the sense that they respond 
to the detection of events. These applications exist in 
many domains and are very useful for data processing. 
Sometimes these applications should be able to react 
not to a single event but to the sequences of events. In 
this case a Complex Event Processing (CEP) approach 
is used [6]. Usually such data processing systems de-
sign is based on the Event Driven Architecture (EDA). 
Mathematical fundamentals to analyze component be-
haviour of EDA based systems can be found in the 
papers [1, 9, 10]. The practically important class of 
event detectors for systems built on EDA has been 
defined and considered in [2].  

While the event types usually are known, in most 
cases it is impossible to determine all their combina-
tions during system design and development. As a result 
the processing system is unable to generate a proper 
reaction on the event combinations that were not taken 
into account during its design. To overcome this prob-
lem the machine learning methods can be used to make 
a processing system adaptable during runtime. Machine 
learning explores the study and construction of algo-
rithms that can learn from and make predictions on data 
[5]. Such algorithms operate by building a model from 
an example training set of input observations in order to 
make data-driven predictions or decisions expressed as 
outputs rather than following strictly static program 
instructions.  

Machine learning is employed in a range of com-
puting tasks where designing and programming explicit 
algorithms is unfeasible. Also it is sometimes conflated 
with data mining,[7] where the latter sub-field focuses 
more on exploratory data analysis and is known as un-
supervised learning [3]. In the paper we are considering a 
learning method for a component of the EDA based 
system and describing in details correctness verification 
procedure for the method. 

1. Basic Notation and Definitions 
In this section the CEP-machine model proposed in 

[9] is described. We will consider subclass of 
CEP-machines called a Regular CEP-machine developed 
in [2]. Below we will use the following notation: 

partialf : X Y  denotes that f  is a partial map-
ping from X  into Y ; 

f (x)   denotes that f (x)  is not defined for the 
member x  of X ; 

f (x)   denotes that f (x)  is defined for the mem-
ber x  of X ; 

f (x) y  denotes that f (x)   and y f (x)  for 
the member y  of Y ; 

  denotes the empty (zero-length) sequence; 
X  denotes the set of all non-empty finite se-

quences composed of   elements of X ; 
X  denotes the set { } X  ; 

X  denotes the set of all infinite sequences com-
posed of elements of X ; 

X  denotes the set X X  ; 

x  denotes the length of the finite sequence x ; 

 x 0  denotes the first element of a finite or infinite 
sequence x ; 

 x 1:  denotes the sequence obtained by removing 
the first element of  the sequence x . 

Let us start from some basic definitions needed to 
describe the mathematical model of a CEP-machine: 

Definition 1. Define a finite set X  that is called 
an alphabet and its elements are called symbols. Further, 

we will call a set L X  a language in this context. 
The symbols are interpreted as a prime messages that 

inform about the corresponding elementary events that have 
happened. Some of these finite symbol sequences carry 
information about the complex events. Below we will call 
these sequences as events. In contrast, other finite symbol 
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sequences do not carry information about any complex 
event. Below we will call them words. 

The sets of Complex Events should respect the cer-
tain conditions. The most important one is that any 
stream of elementary events is uniquely subdivided into a 
series of complex events by directed viewing the stream 
from left to right. This condition leads to the following 
definition. 

Definition 2. Let L  be a language with the al-
phabet X  then L  is prefix- free if for any u L  and 

v X  the assumption uv L  implies the equality 
v   . 

Now let us fix that any set of complex events re-
lated to the system are prefix-free. Next, let us briefly 
recall the principal idea of the used model. 

Definition 3. (Regular handler). A handler 
partialh : X Y   is called regular if there exist 

— some finite set Z  with the marked element 
0z Z  and 

— some mapping : Z X Z Y     

such that for any u X  and y Y  the condition 

h(u) y  is fulfilled iff there exist 1 u 1z ,..., z Z   

such that 
 i 1 iz (z , u i )    for 0 i u 1    and  

u 1y (z ,u u 1 )      . 

In this case we say that the handler h is realized by 
the triple 0(Z,z , ) . 

Definition 4. (Regular CEP-machine Struc-
ture). Any Regular CEP- machine is a quintuple 

0M (X, Y,H,h , )   with the following constituents: 
— the finite set that is alphabet of atomic mes-

sages X ; 
— the finite set that is alphabet of machine re-

sponses Y  respectively; 
— the finite set of regular handlers H ; 
— the initial handler 0h H ; 
— the response function : Y H  . 
The Algorithm 1 determines behaviour of any 

Regular CEP-machine. 
Algorithm 1. Operational model of a Regular 

CEP-machine 
1 def run (M,s) :  
   Require: the studied Regular CEP-machine 

0M (X, Y,H,h , )   and some stream of elementary 

events s X . 
   Ensure :  printing of the corresponding response 

stream 
2       0handler,buff h ,[]  
3        while True: 
4                 new _ event,s s[0],s[1:]  

5                buff .append(new _ event)  

6                 if handler(buff ) :  continue 
7                 else: 
8                        response handler (buff )  
9                        pr int(response)   # printing of the 

current response 
10                      handler,buff (response),[]   

2. Regular CEP-machine  
Learning Method 

In this section we recall a concept of the machine 
learning method that was proposed in the authors pre-
vious paper [11]. The Regular CEP- machine learning 
problem can be decomposed into series of the Regular 
Handler learning problems. Since each Regular Handler 
has only one possible response "accepted", below we will 
call it "a regular acceptor". Therefore, a Regular Ac-
ceptor learning problem can be formulated in the fol-
lowing way. 

Problem. Let 1 ME {u ,..., u } X   be a finite 

prefix-free set of events and 1 NC {v ,..., v } X   be a 

finite set of words such that E C    then we interpret 

elements of set E  as examples and elements of set C  as 
counterexamples; 

we need to find a regular acceptor 
partialh : X {accepted}   such that the following 

conditions are fulfilled: 
1. ih(u ) accepted   for all 0 i M  ; 
2. ih(v )   for all 0 i N  ; and 
3. The regular acceptor is minimal. Namely, the 

corresponding set Z  has the least number of elements 
among all possible. 

Now let us discuss the interrelation between regular 
acceptors and finite state machines. In particular, con-

sider for any regular acceptor partialh : X Y   that 
realized by the triple 0(Z,z , )  the machine 

trap 0 0 accept(Q Z Y{q },X, : Q X Q,q z ,Q Y)     
 where trapq Z Y   and trap(y, x) q  ; 

trap trap(q , x) q   for any x X  and y Y  then the 

regular language accepted by this machine coincides 
with the set of events accepted by the regular acceptor. 
General automata theory guarantees that the built ma-
chine can be uniquely minimized without changing lan-
guage that is accepted by the machine. Note, that the 
corresponding minimal machine has only one 
non-acceptable state q  such that (q, x) q   for any 
x X . This state is called the trap and denoted as trap . 
Further, we require (q, x) trap   for any acceptable 
state q  and any x X . Now we can describe the pro-
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posed learning method. The general view of the method 
to generate an acceptor is defined by Alg. 2. This method 
defines the series of redirections for acceptor transitions 
leading into the trap starting with the minimal acceptor 
for the set of examples.  

Algorithm 2. Specification of the learning method 
1 def  learning _ method(E,C) : 
   Require: the finite prefix-free set of events E  
   Ensure:   the required acceptor 
2               do that: 
3                 initiate the learning process by applying 

function init to the set E  and denoting the result by 
acceptor  # initialize the set of transitions that cannot be 
redirected 

4               frozen _ transitions set()  
5               while halting condition is not fulfilled: 
6                     do that: 
7                           modify acceptor  by redirecting a 

transition leading into the trap  and minimize the re-
sulting acceptor if the redirected transition  is not in 
frozen _ transitions  

8                  do that:  
9                         check  that acceptor is admissible in 

the sense that it does not accept any word from C  
10                if the checking is successful: continue 
11                     else: 
12                         do that:  
13                             roll-back the modification and add 

the redirected transition into frozen _ transitions  
The algorithm uses two functions: init  - that gen-

erates initial acceptor using a set of examples E ; and 
modify  - that modifies the acceptor so that it "learns" a 
new event.  

These functions are specified separately. 
To complete the specification of the learning 

method the algorithms for the function init  (see item 3 
of Alg. 2) and for function modify  (see item 7 of Alg. 2) 
need to be described. 

To generate the minimal initial acceptor with the 
init  function the following algorithm is used: 

1. states of the acceptor are defined recursively as 
special sets of words; 

2. we choose the set E  as 0z  and add it to Z ; 
3. we choose the empty set as trap ; 
4. if for x X  in E  there is not a word with the 

first symbol x  then assign 0(z , x) trap   else the set 

{u X xu E}   add to Z ; 

5. repeat recursively this consideration for all 
member of Z  until Z  is stabilized; 

6. denote the set { }  by accepted. 
The acceptor obtained in this manner is assigned as 

result of the function init . 

The function modify  is developed using the fol-
lowing algorithm: 

1. Define z = z0 set of acceptable events and 
w X  a new word will be learned by the acceptor. 

2. while w   : 
3. add an event w  if not exists into z  
4. x, w w[0], w[1:]  
5. If exists a transition x  for the pair x(z, z Z)  

then xz z . where xz {u X v z : v xu}      is a 
set of suffixes obtained from the set z  by removing 
symbol x . 

6. Else if exists a set of suffixes wz Z  such that 

ww z  then for the pair w(z,z )  if not in fro-
zen_transitions add a transition marked by x  and set 

wz z  
7. Else add a new state new newz Z : z {w}   and 

for the pair new(z, z )  add a transition marked by x  and 
set newz z  

8. Done 
To select a transition for redirection we use the fol-

lowing simple remark: the minimal regular acceptor has at 
most one state that is an attractor, i.e. any transition that 
goes out from this state has it as a target. Moreover, if this 
acceptor accepts a finite language then the existence of the 
attractor is guaranteed. Further, to minimize the new ac-
ceptor we use standard Hopcroft's algorithm [4]. 

3. Learning Method 
Correctness Verification 

In this section we present in details an experiment to 
verify validity of the Regular Acceptor learning method. 
The Alg. 3 specifies the schema of the experiment. The 
key point in the verification procedure is a test_acceptor 
random generation. Later this acceptor is used to define 
the sets of examples Е and counterexamples С.  

Algorithm 3. The schema of the computer ex-
periment 

1 for _ in range(given_number_of_experiments): 
2 do that: 
3 | generate randomly a regular acceptor 

test_acceptor 
4 do that: 
5 | generate randomly sets E  and C  using 

test_acceptor 
6 acceptor' = learning_method( E , C ) 
7 do that: 
8 I compare acceptor' and test_acceptor 
To generate this test_acceptor at first we generate a 

syntactic tree of the regular expressions and then convert it 
to the regular acceptor. To implement the mentioned ex-
perimental schema we use language Python with libraries 
"scipy" and "numpy" [8]. Particularly, all random choices 
have been provided by the standard function random.choice 
contained in the library "numpy". 
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To randomly generate a regular expression the fol-
lowing schema has been used. 

Data structures: two data structures are used to 
generate a regular expression, namely, 

1. the following dictionary (in the terms of language 
Python) is used to hold constant data 

model_frame = { 
        'tokens':  ( # this tuple contains a list of 
                        # used tokens 
), 
'functors':  (# this tuple contains operations 
                 # and their arities 
('star', 1 ) , # Kleene's star 
('concatenation', 2 ) ) ,  

     ('union', 2) 
) 
} 
2. The following recursive structure is used to rep-

resent the syntactic tree of a regular expression. 
expression = token 
                  | (functor, expression, ...) 
where number of expressions after a functor equals 

an arity of this functor. 
 For example, only one expression follows the 

functor "star". 
One can see that an expression is represented by a 

tree. Each leaf of this tree is marked by a token and each 
internal node of the tree is marked by a functor. More-
over, the number of children for an internal node equals 
the arity of the corresponding functor. 

Schema of tree random generation: the recur-
sive structure of the syntactic tree that represents some 
regular expression indicates the way of this tree random 
generation (see Alg. 4). 

Algorithm 4. A tree random generation 
1 def create_tree(depth = 0): 
2 global model_frame 
3 do that: 
4 | decide whether the tree root is an internal node 

or a leaf 
5 if the tree root is a leaf: 
6 do that: 
7 | choose randomly token 
8 return token 
9 else: 
10 do that: 
11 | choose randomly functor 
12 arity, temp = model_frame[ 'functors' ][ 

functor ][1], [functor] 
13 for _ in range(arity) : 

temp.append(create_tree(h+l)) 
14 return tuple(temp) 
To make decision whether the root of the current 

subtree is an internal node or a leaf (item 4 of Alg. 4) we 
propose to use the following function p(n) , that deter-
mines the conditional probability to mark the current 

node as internal if its depth is equal to n  if 0 n    or 
if n   ^ 

 
 

21 n 2, 0 n ;
p(n)

exp 1 n 2, n .

      
   

 

The described generation method provides con-
structing well-balanced syntactic trees, but it does not 
control presence of disbalance for marking. Therefore, to 
correct possible disbalances we propose the next way to 
perform item 7 and item 11 of Alg. 4: to use a standard 
function random.choice, which is contained in the 
package "random" of the library "numpy", for choice an 
item from the list 1 2 k[i , i ,..., i ]  under the condition that 
probability to choose ij is inversely proportional to 
number of the realizations for this choice. This correction 
ensures the "uniformness" of distribution for markings of 
leaves and internal nodes. 

Now, the following procedure called 
TransformSyntaxTreeToFSM(tree)  can be used to con-
vert a syntactic tree to the finite state machine. Next, the 
obtained finite state machine can be transformed to the 
regular acceptor by joining all acceptable states. 

1. if SyntaxTreeNode.GetType() leaf   then: 
( a )  symbol SyntaxTreeNode.GetValue();  
( b )  0FSM.AddStartState(q ) ; 
( c )  symbolFSM.AddTer min alState(q ) ; 

( d )  0 symbolFSM.AddArrow(q ,symbol,q ) ; 

( e )  Return FSM ; 
2. else if SyntaxTreeNode.GetType 'star '  then: 
( a )  childNode SyntaxTreeNode.GetChild() ; 
( b )  FSM TransformSyntaxTreeToFSM(childNode) ; 
( c )  for each terminal arrow    

arrow FSM.GetAllTer min alArrows() : 
( d )  0arrow.replaceEndStateTo(q ) ; 
( e )  end for each loop; 
( f )  Return FSM ; 
3. else if SyntaxTreeNode.GetType 'union'  then: 
( a )  0childNode SyntaxTreeNode.GetChild(0) ; 
( b )  1childNode SyntaxTreeNode.GetChild(1) ; 
( c )  0subFSM   

0TransformSyntaxTreeToFSM(childNode ) ; 
( d )  1subFSM   

1TransformSyntaxTreeToFSM(childNode ) ; 
( e )  0 1FSM Merge(subFSM ,subFSM ) ; 
( f )   Return FSM ) ;  
4. else if 

SyntaxTreeNode.GetType 'concatenation '  then: 
(a)    0childNode SyntaxTreeNode.GetChild(0) ; 
(b)   1childNode SyntaxTreeNode.GetChild(1) ; 
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(c)  0subFSM   

0TransformSyntaxTreeToFSM(childNode ) ; 
(d) 1subFSM   

1TransformSyntaxTreeToFSM(childNode ) ; 
(e)    0 1FSM Concatenate(subFSM ,subFSM ) ; 
(f)    Return FSM ; 
Note the Merge()  operation merges two finite state 

machines starting from initial states and removing du-
plicate arrows. Where as a Concatenate()  operation 
simply concatenates all terminal states of the first finite 
state machine with the initial state of the second one. 

The results of the more than 10,000 experiments 
have shown that for a randomly generated acceptor with 
the obtained sets E  and C , the presented method of 
learning was restoring this acceptor using these sets. 

Thus, we can assume that the proposed method is 
precise on regular acceptors. The last assumption can be 
considered as evidence in favour of the validity of the 
proposed method of machine learning. 

Conclusion 
In the paper a Regular CEP-machine learning 

method and its correctness verification procedure were 
considered. It was shown that this method can be used 
during design and development of the systems based on 
Event Driven Architecture. The advantage of this method 
is needlessness of all possible event combinations 
analysis. Instead the system can adapt it self during run-
time. The computer experiment based on the correctness 
validation procedure shows that the method restores 
tested Regular CEP-machine.  

The obtained results make need for further research 
in the following directions: 

- future experimental study of the proposed 
method in order to clarify the boundaries of its applica-
bility; 

- finding rigorous formulations of the method 
convergence conditions; 

- mathematical justification of the method; 
- evaluation of the effectiveness of the 

method 
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РЕГУЛЯРНА ОБРОБКА ПОДІЙ ТА ВЕРИФІКАЦІЯ ВІРНОСТІ МЕТОДІВ МАШИННОГО НАВЧАННЯ 

Г.М. Жолткевич, В.В. Дорожинський, А.В. Хадіков 
Сьогодні такі концепції як архітектура керована подіями та машинне навчання все частіше використовуються 

підчас розробки інформаційних систем. У статті авторами запропонований підхід до поєднання цих двох концепцій для 
розв'язання проблеми логічної складності проектування систем, що базуються на архітектурі керованій подіями. Ви-
користовуючи чіткі математичні формулювання, у статті розглянуто метод машинного навчання компонентів таких 
систем. Зокрема досліджується проблема верифікації правильності методу. Окреслені напрямки подальшого дослі-
дження. 

Ключові слова: машинне навчання, обробка подій, акцептор, регулярна мова, безпрефіксна мова. 
 

РЕГУЛЯРНАЯ ОБРАБОТКА СОБЫТИЙ И ВЕРИФИКАЦИЯ ПРАВИЛЬНОСТИ  
МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ 

Г.Н. Жолткевич, В.В. Дорожинский, А.В. Хадиков 
В настоящее время такие концепции как архитектура управляемая событиями и машинное обучение все чаще 

используются в информационных системах. В статье авторы предлагают подход объединяющий эти две концепции для 
решения проблемы логической сложности проектирования систем основанных на архитектуре управляемой событиями. 
Используя строгие математические формулировки, рассматривается метод машинного обучения компонентов таких 
систем. В частности, изучается проблема верификации правильности метода. Предлагаются направления для даль-
нейшего исследования. 

Ключевые слова: машинное обучение, обработка событий, акцептор, регулярный язык, беспрефиксный язык. 


