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SPECTRAL ANALYSIS OF SIGNALS BY ROOT-MIN-NORM METHOD,
USING MODIFIED SSA METHOD

The paper considers the problem of efficiency enhancing of spectral analysis of the signals observed against
noise via Root-Min-Norm method with data preprocessing by modification of the SSA method. Simulations results
are presented that confirm the enhancement of spectral analysis efficiency by Root-Min-Norm method when using

the SSA method and its modification.
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Introduction

In the modern radioelectronic systems (RES) of in-
formation transmission and measuring RES, signals are
considered as elements of a certain space, the properties
of signals are viewed as space properties and signal
transformations are considered as mapping of one space
into another space. The mathematical base for such rep-
resentation is functional analysis. The concepts of spaces,
norms, basis allow to formalize the processes related to
the transmission and reception of signals [1-2].

The signal processing usually requires the forma-
tion of some basis such as the basis of eigenvectors of
the covariance matrix (CM) of observations, the power
basis, the basis based on the using of Gram-Shmidt or-
thogonalisation and so on [1].

The eigenvalue decomposition (EVD) of the CM
of observations or singular value decomposition of the
data matrix is the base of the modern spectral analysis
methods. Furthermore, the methods of noise reduction,
the methods of signal processing in communication sys-
tems with a multi-element antenna array on the trans-
mitting and receiving side (MIMO-multiple input-
multiple output system), pattern recognition (recogni-
tion of signals with digital modulation or images) meth-
ods, methods of parameter estimation of compound sig-
nals also use EVD or SVD [1-6].

It should be noted that the Karhunen-Loeve trans-
form (also known as Hotelling transform) is related with
EVD and widely used in many fields of data analysis
[2]. In the MIMO communication systems the eigenvec-
tors (singular vectors) are used for parallel data trans-
mission, precoding, beamforming (for example, in the
radio SC3800 of Silvus StreamCaster™), the channel
state estimation.

The subspace — based methods are related with se-
paration of eigenvectors of covariance matrix on corre-
sponding to signal subspace and orthogonal subspace

(usually such subspace is called noise subspace). How-
ever, the term orthogonal subspace is more appropriate
because such subspace is orthogonal complement of
signal subspace.

In the case of antenna array signal processing
(spatial spectral analysis) the MUSIC and Min-Norm
methods use the orthogonality between the steering vec-
tors of signals and noise subspace eigenvectors. The
ESPRIT uses the property of invariance relatively to
shift of signal subspace [1; 7].

Efficiency of spectral analysis methods becomes
worse in the conditions of the low signal-to-noise ratio,
small samples. It can be improved using the preliminary
signal processing (preprocessing) methods [2; 4-5].

The beamspace transformation, spatial smoothing,
forward-backward averaging, noise reduction (signal
filtering), Gram-Shmidt orthogonalizaiton,
spectrum analysis (SSA) [1-6] are the examples of the
preliminary processing methods that can be used with
spectral analysis methods.

SSA is one of the methods of noise reduction in
observation, such as the total least squares (TLS), surro-
gate data technology, wavelet transformation [4-5].

It is known that efficiency of the Min-Norm (Root-
Min-Norm) method depends on estimate of covariance
matrix of observation [7].

Therefore, the purpose of the paper is to improve
the efficiency of signal spectral analysis by Root-Min-
Norm method in the conditions of small samples, using
the modified SSA method.

singular

Data model

The sequence of observation results y(n) can be

expressed as [8]:

\
y(n) = Z Xxy(n)+e(n)=s(n)+e(n), n=1...,N, (1)

v=l

16

© Vasylyshyn V., 2018


http://www.hups.mil.gov.ua/periodic-app/journal/soi/2018/1

Oobpooka inghopmauii 6 cknaonux inghopmayiiinux cucmemax

where x,(n)=a, sin(o,n+¢,) is thev-th harmonic
component, e(n) is the white Gaussian noise, o, is the
amplitude, o, =2nf,is the frequency, and ¢, is the
phase of v -th component. It is assumed, that ¢, are the
random independent values equally spaced on the inter-

val [0,27), w, €[0,7), and e(n) is the white Gaussian

noise with zero mean and variance o> . The estimates of
frequencies of V  signal components
oy, Vv=L---,V must be obtained based on the observa-

tion {y(n)}llf=1 )

The data matrix with the Hankel structure formed

harmonic

from the input sample y(n) of size N can be presented
as [2; 4; 6]

y@»  y(?2) y(N-m+1)
- y(:2) y(:3) y(N —:m+ 2| @
y(m) y(m+1) y(N)

It can be seen that columns of the matrix are the

vectors (segments) of size m>2V
y(n) =[y(n)...y(n+m— 1)]T , ()T denotes transposing,
n=1...,K, K=N-m+1. In the nonlinear dynamics

the similar segmentation of time series is called embed-
ding in the phase space [4].
The sample CM of observation can be obtained as

K
R= % > y()y' (n)= %YYT . Let us introduce the

n=1

basis from eigenvectors {u;};" . The CM R can be

m
written in the form R = ZyiuiuiT . The singular value
i=1
decomposition of the data matrix Y yields by analogy
[2; 4-6]:
my
T
Y= z HqUgV¥q » (3)
q=1
where m,, < min{m,K} is the rank of matrix Y, Hq

are the singular values, 0, are the left singular vectors,

q
and ffq are the right singular vectors of data matrix Y.

The left and right singular vectors form the orthonormal
basis of row space and column space of matrix Y re-
spectively.

The eigendecomposition of the sample CM R

yields [4-5]:
A, o ||Of
S )
0 A,

T
Un

where ¥; >7, >...> 7y are the signal-subspace eigen-

2 2

and

values, e g G

Vg4 ®O
Tk+1 ®YKk42 =---7m =0 are the noise-subspace eigen-

values, Ug =[i; - uy] is the mxV matrix con-

structed with signal-subspace eigenvectors, fJn is the
mx(m—\7) matrix constructed of noise-subspace ei-
genvectors, [\S is the diagonal matrix that contains \%
signal eigenvalues, An is the diagonal matrix of m-V

noise-subspace eigenvalues, and V is the estimate of
the number of harmonic components.

The realization of eigenstructure methods requires
spectral decomposition (EVD) of the CM R or SVD of
data matrix Y. The Root-Min-Norm estimates the fre-
quencies of harmonic components as roots of polino-
mial [1]:

Ponn (2) =2 ()11 e ef T a(2) )
where e; is the Mx1 vector with all zeros elements

except the first one, equal to unity, nt = ﬁn IAJE is the
projector on the orthogonal subspace (noise subspace),

a(z) =[1,z,...,zM_1]T, z=exp(jo) .

Signal spectral analysis
by Root-Min-Norm, using modified
SSA method

The fundamentals of SSA method are connected
with signal processing [6] and nonlinear dynamic [2; 4].
The modified SSA method is presented in [5]. The re-
alization of the modified SSA method requires the fol-

lowing steps: 1) arrange the sample {y(n)}ﬁl=1 into the

Hankel data matrix Y ; 2) compute the EVD of R or

SVD of data matrix Y; 3) select \Y% signal-subspace
singular values and corresponding singular vectors;
4) construct the data matrix filtered from observation

\Y
noise Ygy = 2 (i —cAs)ﬁqVqT , where & is the estimate
q=1
of noise variance; 5) construct the filtered sample of
time series yg (n) based on using the hankelisation
operator (i.e. by averaging the elements of the matrix
Yy located on cross diagonals of the matrix).

It should be noted that as mentioned in [6] the
noise reduction procedure can be repeated several times
to improve the results.

It can be seen from equation for Yy, that estimate

6 influences on the efficiency of filtration of input se-
quence from observation noise.
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The usual estimate of noise variance is defined as
62 = 1/ (m—{/)) trace([\n) [8]. The feature of the es-

timate is the components of noise added to signal eigen-
values are not taken into account. Such situation deter-
mines the fact that this estimate is an underestimate of
noise variance. In the paper the estimate of noise vari-
ance 6m0d2 = 612 /(1-V/K) is used [5], where
2 2 v 2 2
67 =6" +(1/K) D (1467)/ (v —6) . Such estimate is
q=1

based on the using of G-analysis (also known as the
random matrix theory) [9; 10].

The joint realization of the Root-Min-Norm me-
thod and the SSA method requires the performing of the

following sequence of the steps: 1) construct Y,

based on ygi (n); 2) calculate EVD of the matrix
R= YssaYT ; 3) realize the Root-Min-Norm method,

using noise-subspace eigenvectors of R .

In order to consider the results of modified SSA
method application together with Root-Min-Norm, let
us assume that the signal consists of two equal power
harmonic components with frequencies f; = 0.2 Hz and
f; =0.212 Hz. The so-called phase portraits are pre-
sented on fig. 1. The signal-to-noise ratio (SNR) was
4dB, N=64. Fig. 1, a corresponds to the signal, the
fig. 1, b corresponds to the input sequence and fig. 1, c

corresponds to the sequence filtered by modified SSA
method.
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Fig. 1. Phase portraits

It can be seen that structure of the point set of the
filtered sequence phase portrait of saves the property of
signal better than one of the input sequence.

Simulation was performed using the signal de-
scribed above (i.e. the frequency separation is less than
Rayleigh resolution limit). The number of signal com-

ponents V =4 because of using the real signal model
[8]. The signal-to-noise ratio (SNR) was defined as

\
10logyo (>’ oc\z, /6%) . A total of L=1000 independent
v=l
simulation runs were performed to obtain each simu-
lated point. Root-mean square error (RMSE) of fre-
quency estimation of the signal harmonic components
was averaged on the number of signal components [5].

We compare the performances of Root-Min-Norm
for initial data (without using SSA), for data after using
SSA method and after using modified SSA method.
Fig. 2 shows the experimental RMSE’s of frequency
estimation of the compared methods versus the SNR.
The segment size was m =18 .
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Fig. 2. RMSE of frequency estimation
of signal harmonic components by Root-Min-Norm
versus SNR, m =18

Fig. 2 shows that using of the modified (improved)
SSA method allows to improve the performance of
spectral analysis by Root-Min-Norm. In other words,
the preprocessing with using the modified SSA method
is the most effective for considered case.

Furthermore, the repeated application of the modi-
fied SSA method to filtered data allows to additionally
improve the performance of spectral analysis. The per-
formance of SSA and modified SSA depends on the of
choice of method parameters [2; 5].

In the second case we consider the case of small
sample (m=53 and K=N-m+1=12).
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Fig. 3. RMSE of frequency estimation
of signal harmonic components
by Root-Min-Norm versus SNR, m =53

Fig. 3 shows that in such case the SSA and the
modified SSA methods also allow improving the per-
formance of Root-Min-Norm. As one could expect, the
threshold SNR in this case is higher than for the condi-
tions of fig. 2.

Conclusion

The paper has considered the joint use of the modi-
fied SSA method with Root-Min-Norm method. The
modified SSA method uses the noise variance estimate
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obtained using random matrix theory. The application of
the SSA and modified SSA methods allows improving
the performance of spectral analysis by Root-Min-Norm
method even in the case of a small sample.

It is of interest to generalize the results of paper for
the case of antenna array signal processing, for the cases

of another bases (such as power basis), for the complex-
valued case. Furthermore, it is of interest to use the con-
sidered approach for the problem of estimating the pa-
rameters of the linear chirp signal, the phase shift key-
ing and the frequency shift keying signals and for re-
lated problems.
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CMNEKTPAINIbHUA AHATI3 CUTHATNIB METOAOM ROOT-MIN-NORM 3 BUKOPUCTAHHAM
MOOU®DIKOBAHOIO METOAY SSA

B.1. Bacunummna

Y emammi poszenaoacmuca 3a0ava niosuwenns egekmueHoCmi CHeKMpanbLHO20 aHANi3y CUSHATIB, WO CNOCmepiealomsesl
Ha goui wymy, memooom Root-Min-Norm npu nonepeoniti oopobyi 0anux 3 GUKOPUCMAHHAM MOOUPIiKo8anoco memoody SSA.
Ilpeocmasneni pesyibmamu iMimayitino2co MoOemo8anHs, wo NiOmeepoNCyioms NiOBUUEHHSI eEeKMUSHOCMI CHEeKMPATbHO2O
ananizy memoodom Root-Min-Norm npu suxopucmanmni memooy SSA ma iioeo moougpixayii.

Kniouosi cnosa: smenwenns wiymy 6 cnocmepesicenHi, 611dCHi 6eKMOPU, 61ACHI 3HAUEHHS, OA3UC BIACHUX 6eKMOPIE, CUH2Y-
JIAPHI 3HAYEHHS, CUHSYIAPHT 86eKMOpU, MOOUpikosanuti memoo SSA.

CMNEKTPAIbHbIA AHANN3 CUITHANOB METOAOM ROOT-MIN-NORM C UCMOJIb30BAHUEM
MOANPULIMPOBAHHOIO METOJA SSA

B.N. Bacunmumma

B cmamve paccmampusaemca 3adaua nosviutenus d¢hGexmusnocmu CReKmpaibHo20 AHAU3A HAONI00AeMbIX HA QoHe
wiyma cuenanog memooom Root-Min- Norm npu npedsapumenvhoti 06pabomie OAHHbIX ¢ UCNOAb308AHUEM MOOUPUYUPOBAHHO-
20 memooa SSA. [Ipeocmasnenvl pe3ynrvmamol UMUMAYUOHHO20 MOOEIUPOBAHUSA, KOMOpble NOOMEepHCOarm nosvluleHue 3¢h-
Gexmusnocmu cnekmpanbHo2o anaauza memooom Root-Min- Norm npu ucnonvzoganuu memooa SSA u e2o moouguxayuu.

Kntouesvie cnosa: ymenvwenue wyma 6 nabmooenuuy, coocmeennvle 6eKmopa, cobcmseennbvle sHavenus, basuc coocmsen-
HbIX BEKIMOPOB, CUHZYNAPHbIE 3HAYEHU, CUHSYIAPHbIE 8eKMOPA, MOOUpuyuposannblii menod SSA.
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