1. Science
  2. Видання
  3. Системи обробки інформації
  4. 4(155)'2018
  5. Robust estimation of Doppler frequency and its higher-order derivatives for a signal reflected from violently maneuvering object

Robust estimation of Doppler frequency and its higher-order derivatives for a signal reflected from violently maneuvering object

I. Baryshev, M. Uss, Radvan Mukhamed Zhavad Kadim
Системи обробки інформації. — 2018. — № 4(155). – С. 7-12.
UDK 621.396.96
Article language: english
Annotations languages:


Annotation: A robust estimation algorithm for the Doppler frequency and its derivatives is proposed based on the MLSAC algorithm. It is shown that it retains its working capacity when the probability of anomalous measurements reaches 0.9 (measurements of the Doppler frequency are abnormal in nine out of ten signal fragments) in comparison with 0.7 for the existing algorithm previously proposed by the authors. This may allow to measure the motion parameters of an object with less visibility at the same distance or an object with the same visibility at a greater distance.


Keywords: Doppler frequency estimation, MLSAC algorithm, maneuvering object

References

1. Ilchuk, A.R., Merkulov, V.I., Samarin, O.F. and Yurchik, I.A. (2003), “Vliyaniye intensivnogo manevrirovaniya tseley na pokazateli effektivnosti sistemy pervichnoy obrabotki signalov v bortovykh RLS” [The impact of intensive maneuvering of targets on the performance indicators of the system of primary signal processing in airborne radars], Radiotekhnika, No. 6, pp. 58-63.
2. Rodzivilov, V.A., Chernykh, M.M., Kuzubov, V.V., Burov, A.I. and Golosov, P.V. (1998), “Kogerentnoye posle-dovatelnoye obnaruzheniye signalov v impulsno-doplerovskikh RLS” [Coherent sequential detection of signals in pulse Doppler radar], Radiotekhnika, No. 4, 96 p.
3. Farina, A. and Studer, F. (1993), “Tsifrovaya obrabotka radiolokatsionnoy informatsii Soprovozhdeniye tseley” [Digital processing of radar information. Maintenance of goals], Radio i svyaz, Moscow.
4. Kanashchenkov, A.I., Merkulov, V.I. and Samarin, O.F. (2002), “Oblik perspektivnykh bortovykh radiolokatsionnykh sistem. Vozmozhnosti i ogranicheniya” [The appearance of promising airborne radar systems], IPRZhR, Moscow.
5. Baryshev, I.V., Uss, M.L. and Radvan, M. (2008), “Izmereniye vysshikh proizvodnykh doplerovskoy chastoty kogerent-noy pachki impulsov, otrazhennoy ot vysokomanevrennogo obyekta” [Measurement of the higher derivatives of the Doppler frequency of a coherent burst of pulses reflected from a highly maneuverable object], Radіoyelektronnі і komp’yuternі sistemi, No. 1, pp. 43-55.
6. Torr, P.H.S. and Zisserman, A. (2000), MLESAC: A New Robust Estimator with Application to Estimating Image Ge-ometry, Computer Vision and Image Understanding, No. 78(1), pp.138-156. http://dx.doi.org/10.1006/cviu.1999.0832.
7. Baryshev, I.V., Uss, M.L. and Radvan, M. (2010), “Sokrashcheniye vremeni poiska intensivno manevriruyushchego obyekta po doplerovskoy chastote i eye proizvodnym vysshego poryadka putem drobleniya otrazhennogo signala” [Reduction of the search time for an intensively maneuvering object using the Doppler frequency and its higher-order derivatives by splitting the reflected signal], Radiotekhnika, Vol. 160, pp. 339-350.
8. Friedman, J., Hastie, T. and Tibshirani, R. (2001), The elements of statistical learning, Springer series in statistics, Vol. 1.

Reference:
Barishev, І.V., Uss, M.L. and Radvan Mukhamed Zhavad Kadіm, (2018), Robust estimation of Doppler frequency and its higher-order derivatives for a signal reflected from violently maneuvering object, Information Processing Systems, Vol. 4(155), pp. 7-12. https://doi.org/10.30748/soi.2018.155.01.