1. Science
  2. Publications
  3. Information Processing Systems
  4. 4(155)'2018
  5. Research of the radio electronic apparate heating dependence from its parameters

Research of the radio electronic apparate heating dependence from its parameters

V. Semenets, A. Sinotin, T. Kolesnikova, S. Sotnik, N. Starodubtsev
Annotations languages:

Description: The paper discusses the issues of thermal conditions in electronic equipment. The factors that have the maximum effect on the temperature rise of parts in electronic equipment are briefly considered. The results of experimental studies, which developed a methodology for designing a radio-electronic apparatus that provides its normal thermal conditions during operation, are presented. Efficient surface cooling systems are given. Also, the paper presents the calculated ratios for determining heat transfer coefficients; heat transfer coefficient through the gas layer from the heated zone to the casing with a known heat transfer coefficient between surface of casing and environment. The dependences of initial parameter on volume of heated zone and intensity of surface heat transfer are given. The dependences of temperature value at the central point of heated zone are given: in the absence of heat sinks; in the presence of heat; with the withdrawal of heat to the housing. It was determined that for the implementation of circuit solutions, it is advisable to choose element base with the lowest power consumption and materials with high temperature resistance. An increase in the volume of heated zone due to a decrease in the density of elements contradicts placement of dimensions minimizing requirement the structure, therefore it can be applied only in the case when there are no rigid restrictions on the dimensions of the structure in the technical specification. Recommendations on the placement of fuel elements in the electronic device heated zone, choice of the element base. The influence of various design parameters on its thermal regime. The given recommendations on the calculation of temperature fields in the process of designing individual device parts, which will allow more accurate calculations of electrical and magnetic circuits, as well as open the possibility of economic justification of a particular design variant.

Keywords: heated zone, anisotropic thermal conductivity, conductive heat drains, effective thermal conductivity, heat transfer coefficient


1. Mayko, I.M. and Sinotin, A.M. (1972), “Eksperimentalnoye opredeleniye effektivnoy teploprovodnosti nagretykh zon radioelektronnykh apparatov” [Experimental determination of the effective thermal conductivity of the heated zones of electronic equipment], Voprosy radioelektroniki. Ser. TRTO, No. 2, pp. 13-17.
2. Mayko, I.M. and Sinotin, A.M. (1974), “O teplofyzycheskom konstruyrovanyy odnoblochnykh radyotlektronnykh appa-ratov s zadannym teplovym rezhymom” [About thermophysical design of single-block radio-electronic devices with a given thermal regime], Voprosy radioelektroniki. Ser. TRTO, No. 1, pp. 50-87.
3. Sinotin, A.M. (2004), “Issledovanie tochnosti metoda mnogih tochek dlya opredeleniya teploprovodnosti anizotropnyih materialov” [Investigation of the accuracy of the multi-point method for determining the thermal conductivity of anisotropic materials], Avtomatizirovannyie sistemyi upravleniya i priboryi avtomatiki, No. 129, pp. 37-40.
4. Dulne, G.N. and Tarnovskiy, N.N. (1971), “Teplovyie rezhimyi elektronnoy apparaturyi” [Thermal modes of electronic equipment], Energiya, Sankt Peterburg, 245 p.
5. Lykov, A.V. (1952), “Teoriya teploprovodnosti” [Heat conduction theory], Gosenergoizdat, Moscow, 392 p.
6. Nikolaenko, Yu.E. (2005), “Shemnyie resheniya organizatsii teplootvoda ot funktsionalnyih moduley EVM s pomoschyu dvuhfaznyih teploperedayuschih elementov i ustroystv” [Schematic solutions for the organization of the heat sink from the functional modules of the computer using two-phase heat transfer elements and devices], Upravlyayuschie sistemyi i mashinyi, No. 2, pp. 29-37.
7. Shelest, V.I. and Kondrashov, A.S. (2003), “Kontseptualnyiy algoritm teplofizicheskogo proektirovaniya radio-elektronnyih sredstv” [Conceptual algorithm of thermophysical design of radio-electronic means], Tehnologiya i konstruirovanie v elektronnoy apparature, No. 5, pp. 26-27.
8. Chernyishyov, A.A. and Ivanov, V.I. (2003), “Metodyi parametricheskoy identifikatsii v nestatsionarnoy teplometrii” [Parametric identification methods in non-stationary calorimetry], Priborostroenie, No. 5, pp. 67-71.
9. Meshkov, S.N. and Gaptrakinov, A.A. (2002), “Raschyot i modelirovanie teplovyih poley sozdavaemyih nagrevatelyami dlya aktivnogo nerazrushayuschego kontrolya” [Calculation and modeling of thermal fields generated by heaters for active non-destructive testing], Radiotehnika, No. 129, pp. 173-178.
10. Kondrashov, I.S. (2006), “Modelirovanie teplovyih rezhimov aktivnyih komponentov elektronnyih moduley” [Simula-tion of thermal modes of active components of electronic modules], Tehnologiya i konstruirovanie v elektronnoy apparature, No. 2, pp. 43-44.
11. Usov, V.V. and Shkatulyak, N.M. (2004), “Issledovanie anizotropii teploprovodnosti deformirovannyih mednyih plastin” [Investigation of the anisotropy of thermal conductivity of deformed copper plates], Tehnologiya i konstruirovanie v elektronnoy apparature, No. 5, pp. 51-53.
12. Kravets, V.Yu. and Nikolaenko, Yu.E. (2004), “Issledovanie teploperedayuschih harakteristik radiatorov s orebreniem na osnove miniatyurnyih teplovyih trub” [Investigation of heat transfer characteristics of radiators with fins based on miniature heat pipes], Tehnologiya i konstruirovanie v elektronnoy apparature, No. 3, pp. 45-47.
13. Pismennyiy, E.N. and Burley, V. (2003), “Vliyanie razrezki, povorotov i otgibki ryober na teploaerodinamicheskie harakteristiki poverhnostey teploobmena” [Influence of cutting, turning and bending edges on the heat and aerodynamic characteristics of heat transfer surfaces], Teplotehnika, No. 5, pp. 10-16.
14. Ismailov, T.A. and Yusufov, Sh.A. (2004), “Temperaturnoe pole elektronnoy platyi vnutri germetichnogo radio-elektronnogo bloka kassetnoy konstruktsii” [Temperature field of the electronic circuit board inside the sealed radio-electronic unit of a cassette design], Priborostroenie, No. 7, pp. 21-25.
15 Ismailov, T.A. and Evdulov, O.V. (2002), “Modelirovanie protsessov teploobmena v termoelektricheskom ustroystve dlya ohlazhdeniya elektronnoy apparaturyi” [Simulation of Heat Exchange Processes in a Thermoelectric Device for Electronics Cooling], Priborostroenie, No. 7, pp. 58-62.
16. Yaryishev, N.A. (2000), “Raschyot temperaturyi odnorodnogo ob'ekta pri konvektivnom teploobmene” [Calculation of the temperature of a homogeneous object during convective heat transfer], Priborostroenie, No. 4, pp. 61-66.

 Semenets, V.V., Synotyn, A.M., Kolesnykova, T.A., Sotnyk, S.V. and Starodubtsev, N.H. (2018), “Yssledovanye zavysymosty maksymalnoho perehreva radyoэlektronnoho apparata ot eho parametrov” [Research of the radio electronic apparate heating dependence from its parameters], Information Processing Systems, Vol. 4(155), pp. 29-34. https://doi.org/10.30748/soi.2018.155.04.