1. Science
  2. Publications
  3. Information Processing Systems
  4. 4(155)'2018
  5. Mathematical model of eutrophications influence to the structure and dynamics of relations in the lake zooplankton

Mathematical model of eutrophications influence to the structure and dynamics of relations in the lake zooplankton

О. Vуsotska, А. Bykh, A. Pecherska, Yu. Bespalov, R. Matviienko, A.Tarasova
Annotations languages:

Description: One of the aspects of the loss the stability by aquatic ecosystem is the massive development of toxic cyanobacteria, which were not previously observed in this ecosystem. The variety of aquatic ecosystems types that can undergo eutrophication with the massive development of cyanobacteria is quite large. There is no satisfactory solution to the question of an adequate laboratory model of an aquatic ecosystem with the massive development of toxic cyanobacteria. These circumstances make it a topical issue to develop mathematical methods and information technologies for identifying and analyzing the risk factors for the development of toxic cyanobacteria in eutrophied reservoirs. Such factors include the structure of relationships and the dynamics of zooplankton of the analyzed ecosystems.Relevance of the research of eutrophications influence to the structure and dynamics of relations in the lake zooplankton using mathematical modeling substantiated in the paper. As a result of mathematical modeling using DMDS, idealized trajectories of the analyzed ecosystem are obtained. The resulting trajectory reflect the dynamics of the number of such groups of zooplankton as: Rotatoria, Daphnia, Diaptomidae and Cyclops, in different periods of eutrophication of Lake Sevan. The analysis of the trajectories of the system revealed that in the stable and unstable periods of eutrophication of Lake Sevan, combinations of values of the numbers of the analyzed groups of zooplankton differ. In the stable period, the maximum number of steps is observed with the coincidence of the minimum values of the number of Rotatoria and Daphnia. In the unstable period, the maximum number of steps is observed with the coincidence of the maximum values of the number of Rotatoria and Diaptomidae.It is proposed to use the difference between the normalized values of the abundance of groups of zooplankton, the combination of the values of whose numbers differ in stable and unstable periods of the aquatic ecosystem, as system parameters. Obtained results can be used in the development of an information system for determining the risk of developing toxic cyanobacteria in a wide class of eutrophied reservoirs.

Keywords: dynamic system, zooplankton, mathematical modeling, system parameters, toxic cyanobacteria, eutrophication


1. Ghoghina, E.S. (2010), “Udalenie bioghennykh elementov iz stochnykh vod: monoghrafija” [Removal of nutrients from wastewater: monograph], MGhSU, Moscow, 120 p.
2. Hadas, O., Kaplan, A. and Sukenik, A. (2015), Long-Term Changes in Cyanobacteria Populations in Lake Kinneret (Sea of Galilee), Israel: An Eco-Physiological Outlook, Life, Vol. 5(1), pp. 418-431. https://doi.org/10.3390/life5010418.
3. Dodds, W.K. and Smith, V.H. (2016), Nitrogen, phosphorus, and eutrophication in streams, Inland waters, No. 6, pp. 155-164. https://doi.org/10.5268/IW-6.2.909.
4. Le, C., Zha, Y. and Li, Y. (2010), Eutrophication of lake waters in China: cost, causes, and control, Environ Manage, Vol. 45(4), pp. 662-670. https://doi.org/10.1007/s00267-010-9440-3.
5. Cottingham, K.L., Ewing, H.A. and Greer, M.L. (2015), Cyanobacteria as biological drivers of lake nitrogen and phos-phorus cycling, Ecosphere, Vol. 6 (1), pp. 1-19. https://doi.org/10.1890/ES14-00174.1
6. Parulekar, N.N., Kolekar, P. and Jenkins, A. (2017), Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis, PLoS One, Vol. 12(3). https://doi.org/10.1371/journal.pone.0173408.
7. Dolman, A.M., Rücker, J. and Pick, F.R. (2012), Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus, PLoS One, Vol. 7. https://doi.org/10.1371/journal.pone.0038757.
8. Li, Y., Xie, P. and Zhao, D. (2016), Eutrophication strengthens the response of zooplankton to temperature changes in a high-altitude lake, Ecol Evol, Vol. 6(18), pp. 6690-6701. https://doi.org/10.1002/ece3.2308.
9. Ochocka, A. and Pasztaleniec, A. (2016), Sensitivity of plankton indices to lake trophic conditions, Environmental Monitoring and Assessment, Vol. 118 (11), pp. 345-354. https://doi.org/10.1007/s10661-016-5634-3.
10. Kamenir, Y. (2007), Stability of Lake Kinneret phytoplankton structure as evidenced by several types of size spectra, Environmental Monitoring and Assessment, Vol. 188(11), pp. 345-354. https://doi.org/10.1127/1863-9135/2007/0168-0345.
11. Hambright, K.D. (2008), Long-term zooplankton body size and species changes in a subtropical lake: implications for lake management, Fundamental and Applied Limnology Archiv für Hydrobiologie, Vol. 173/1, pp. 1-13. https://doi.org/10.1127/1863-9135/2008/0173-0001.
12. Vysockaja, E.V., Bespalov, Ju.Gh., Pecherskaja, A.I. and Parvadov, D.A. (2016), “Ispoljzovanie marghalefovoj modeli sukcessii v tekhnologhijakh distancyonnogho obnaruzhenija priznakov antropoghennykh vozdejstvij na rastiteljnyj pokrov” [The use of the margalef model of succession in the technology of remote detection of signs of anthropogenic effects on vegetation], Radioelektronni i komp'juterni systemy, No. 2 (76), pp. 15-19.
13. Rozenbergh, Gh.S. (2010), “Informacionnyj indeks i raznoobrazie: Boljcman, Koteljnikov, Shennon, Uyver” [Informa-tion index and diversity: Boltzmann, Kotelnikov, Shannon, Weaver], Samarskaja luka: problemy reghyonaljnoj i ghlobaljnoj ekologhii, Vol. 19, No. 2, pp. 4-25.
14. Vysockaja, E.V., Pecherskaja, A.I. and Rak, L.I. (2016), “Modelirovanye dinamiki soghlasovannosti parametrov ser-dechno-sosudistoj sistemy na raznykh stadijakh adaptacionnogho sindroma” [Modeling the dynamics of the consistency of the parameters of the cardiovascular system at different stages of the adaptation syndrome], Visnyk NTU KhPI. Serija “Mekhaniko-tekhnologhichni systemy ta kompleksy”, No. 4(1176), pp. 14-18.
15. Vysockaja, E.V., Klochko, T.A. and Nosov, K.V. (2015), “Diskretnoe modelirovanie dinamicheskikh sistem otnoshenij kolorometricheskikh parametrov raznotravjja i posevov kuljturnykh rastenij” [Discrete modeling of dynamic systems of relations of the colorimetric parameters of herbs and crops of cultivated plants], Sovremennyj nauchnyj vestnyk, No. 11(258), pp. 65-70.
16. Dobrorodnia, G., Gordiyenko, N. and Klymenko, V. (2016), Studying the mechanisms of formation and development of overweight and obesity for diagnostic information system of obesity, Eastern-European Journal of Enterprise Technologies, Vol. 6, Iss. 2 (84), pp. 15-23. https://doi.org/110.15587/1729-4061.2016.85390.
17. Zholtkevych, G.N., Bespalov, Y.G., Nosov, K.V. and Abhishek, M. (2013), Discrete Modeling of Dynamics of Zooplankton Community at the Different Stages of an Antropogeneous Eutrophication, Acta Biotheoretica, No. 61 (4), pp. 449-465. https://doi.org/10.1007/s10441-013-9184-6.
18. Tuomisto, H., Ruokolainen, L. and Ruokolainen, K. (2012), Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results, Ecography, Vol. 35, Iss. 11. https://doi.org/10.1111/j.1600-0587.2012.07339.
19. Balym, Y., Georgiyants, M. and Vysotska, O. (2017), Mathematical modeling of the colorimetric parameters for remote control over the state of natural bioplato, Eastern-European Journal of Enterprise Technologies, No. 4 (10-88), pp. 29-36. https://doi.org/10.15587/1729-4061.2017.108415.
20. Bespalov, Y., Nosov, К. and Kabalyants, P. (2017), Discrete dynamical model of mechanisms determining the relations of biodiversity and stability at different levels of organization of living matter, bioRxiv, July 31. https://doi.org/10.1101/161687.

 Vыsotskaia, E.V., Bыkh, A.Y., Pecherskaia, A.Y., Bespalov, Yu.H., Matvyenko, R.V. and Tarasova, A.L. (2018), “Matematycheskoe modelyrovanye vlyianyia эvtrofykatsyy na strukturu y dynamyku otnoshenyi v ozernom zooplanktone” [Mathematical model of eutrophications influence to the structure and dynamics of relations in the lake zooplankton], Information Processing Systems, Vol. 4(155), pp. 57-65. https://doi.org/10.30748/soi.2018.155.08.