1. Science
2. Publications
3. Information Processing Systems
4. 4(155)'2018
5. Measuring task calibration measurement means

#### Measuring task calibration measurement means

S. Levin
Annotations languages:

Description: The measuring task of calibrating measuring instruments is considered, the solution of which involves identifying a conversion function or correction function of a calibrated measuring instrument, finding its calibration characteristic or calibration diagram, which requires a probabilistic estimate of possible values of the output variable in the equation of the indirect measurement method according to probabilistic estimates input variables. Using the example of solving the measurement problem of thermometer calibration for measurement data from the international guide “Guide to the Expression of Uncertainty in Measurement” (GUM), we compared the results of solving a problem based on three approaches to the accuracy estimation: classical linear regression analysis, momentary and compositional approaches. Classic linear regression analysis provides an estimate of the accuracy of the result in the form of a confidence zone of a calibration curve. The GUM sub-approach qualifies as a momentbased method based on the construction of interval accuracy estimates based on the second-order moment estimates of the input variables of the indirect measurement method equation. At the same time, the compositional approach uses the method of functional transformations to obtain the distribution of the output variable as a composition of the distributions of input variables followed by the construction of a tolerant interval or tolerance zone as the most complete estimate of the accuracy of the output variable of the indirect measurement method. It is shown that for the data of the GUM thermometer calibration problem from the GUM, the ratio of the sizes of the coverage interval, the confidence and tolerance intervals is respectively 0.188:1:0.478 with the likelihood of grip and confidence probability equal to 0.95. The difference in accuracy estimates is caused by the difference in the formulation of the objective of the measurement task. If in the GUM moment approach, a proper estimate of measurement uncertainty is not the variance of the quantity sought, but its average arithmetic variance, then in the compositional approach the basic accuracy estimate is the stochastic tolerance interval.

Keywords: measuring instrument, conversion function, error function, correction function, calibration, calibration, confidence probability, tolerance interval

#### References

1. Interstate standard (1980), “8.061–80 GSI. 8.061–80 GSI. Poverochnye skhemy. Soderzhanie i postroenie” [8.061–80 GSI. State system for ensuring the uniformity of measurements. Verification schedules. Scope and layont], available at: www.stroysvoimirukami.ru/gost-8061-80.
2. State Standard of the Russian Federation (2006), “10576-1–2006 Statisticheskie metody. Rukovodstvo po otsenke soot-vetstviya ustanovlennym trebovaniyam. Chast 1. Obshchie printsipy” [10576-1–2006 Statistical methods. Guidelines for the evaluation of conformity with specified requirements. Part 1. General principles], available at: www.files.stroyinf.ru/Data/28/2845.pdf.
3. State Standard of the Russian Federation (2011), “8.731–2010 GSI. Sistemy dopuskovogo kontrolya. Osnovnye poloz-heniya” [8.731–2010 GSI State system for ensuring the uniformity of measurements. Tolerance control systems. Main principles], available at: www.docs.cntd.ru/document/gost-r-8-731-2010-gsi.
4. NPO Professional (2010), “Mezhdunarodnyy slovar po metrologii (VIM-3)” [International vocabulary of metrology – Basic and general concepts and associated terms (VIM)], Saint Petersburg.
5. National Standard of the Russian Federation (2013), “8.820–2013 GSI. Metrologicheskoe obespechenie. Osnovnye polozheniya” [8.820–2013 GSI. State system for ensuring the uniformity of measurements. Metrological assurance. General], available at: www.docs.cntd.ru/document/1200107589.
6. ISO/IEC Guide 98-3:2008 Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measure-ment (GUM: 1995), available at: https://www.iso.org/standard/50461.html.
7. State Standard of the Russian Federation (2002), “5725-1–2002 Tochnost (pravilnost i pretsizionnost) metodov i rezultatov izmereniy” [5725-1–2002 Accuracy (trueness and precision) of measurement methods and results. Part 1. General principles and definitions], available at: www.docs.cntd.ru/document/1200029975.
8. All-Russian Research Institute of Metrological Service (2004), “MI 1317–2004 GSI. Rezultaty i kharakteristiki pogreshnosti izmereniy. Formy predstavleniya. Sposoby ispolzovaniya pri ispytaniyakh obraztsov produktsii i kontrole ikh parametrov” [MI 1317–2004 GSI. Results and characteristics of measurement error. Forms of representation. Methods of use when testing product samples and monitoring their parameters], available at: www.metrob.ru/html/ntd/MI/MI1317-2004.html.
9. Interstate Council for Standardization, Metrology and Certification (2008), “RMG 83–2007 GSI. Shkaly izmereniy. Terminy i opredeleniya” [RMG 83–2007 GSI Measurement scales. Terms and Definitions], available at: https://znaytovar.ru/gost/2/RMG_832007_GSI_SHkaly_izmereni.html.
10. Levin, S.F. (2018), “Rukovodstvo po vyrazheniyu neopredelennosti izmereniya: problemy, nerealizovannye vozmozhnosti i reviziya. Chast 1. Terminologicheskie problemy” [A Guide to Expressing Measurement Uncertainty: Problems, Unrealized Opportunities, and Revisions. Part 1. Terminological problems], Izmeritelnaya tekhnika, No. 2, pp. 3-8.
11. State Standard of Russia (2000), “P 50.2.004–2000 GSI. Opredelenie kharakteristik matematicheskikh modeley zavisimostey mezhdu fizicheskimi velichinami pri reshenii izmeritelnykh zadach. Osnovnye polozheniya” [P 50.2.004–2000 GSI Determining the characteristics of mathematical models of dependencies between physical quantities when solving measurement problems. Main provisions], available at: https://znaytovar.ru/gost/2/R_5020042000_GSI_Opredelenie_x.html.
12. Interstate Standard (1984), “8.009-84 GSI. Normiruemye metrologicheskie kharakteristiki sredstv izmereniy” [8.009-84 GSI. Standard metrological characteristics of measuring instruments], available at: www.docs.cntd.ru/document/1200004505.
13. All-Russian Scientific Research Institute of Metrology (2011), “RMG 29–2013 GSI Metrologiya. Osnovnye terminy i opredeleniya” [RMG 29–2013 GSI State system for ensuring the uniformity of measurements. Metrology. Basic terms and defini-tions], available at: www.docs.cntd.ru/document/1200115154.
14. Vuchkov, I., Boyadzhieva, L. and Solakov, Ye. (1987), “Prikladnoy lineynyy regressionnyy analiz” [Applied linear re-gression analysis], Finansy i statistika, Moscow.
15. (2005), “MI 2916–2005 GSI. Identifikatsiya raspredeleniy veroyatnostey pri reshenii izmeritelnykh zadach” [MI 2916– 2005 GSI. Identification of probability distributions when solving measurement problems].
16. Bolshev, L.N. and Smirnov, N.V. (1983), “Tablitsy matematicheskoy statistiki” [Mathematical Statistics Tables], Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, Moscow.
17. State Standard of Russia (2011), “R 8.736-2011 GSI. Izmereniya pryamye mnogokratnye. Metody obrabotki rezultatov izmereniy. Osnovnye polozheniya” [R 8.736-2011 GSI State system for ensuring the uniformity of measurements. Multiple direct measurements. Methods of measurement results processing. Main principles], available at: www.internet- law.ru/gosts/gost/52042.
18. Levin, S.F. (2001), “Metrologiya. Matematicheskaya statistika. Legendy i mify 20-go veka: Legenda o neopredelennosti” [Metrology. Mathematical statistics. Legends and Myths of the 20th Century: The Legend of Uncertainty], Partnery i konkurenty, No. 1, pp. 13-25.
19. Levin, S.F. (2018), “Rukovodstvo po vyrazheniyu neopredelennosti izmereniya: problemy, nerealizovannye vozmozhnosti i reviziya. Chast 2. Veroyatnostno-statisticheskie problemy” [A Guide to Expressing Measurement Uncertainty: Problems, Unrealized Opportunities, and Revisions. Part 2. Probabilistic-statistical problems], Izmeritelnaya tekhnika, No. 4, pp. 7-12.
20. All-Russian Scientific Research Institute of Metrology (2013), “RMG 29–99 GSI. Metrologiya. Osnovnye terminy i opredeleniya” [RMG 29–99 GSI Metrology. Basic terms and definitions], available at: www.docs.cntd.ru/document/1200115154.
21. All-Russian Scientific Research Institute of Metrology (1992), “MI 2222–92 GSI. Vidy izmereniy. Klassifikatsiya” [MI 2222–92 GSI. Types of measurements. Classification], available at: https://www.expertnk.ru/docs/other/mi2222-92.pdf.
22. Ivakhnenko, A.G. (1968), “Metod gruppovogo ucheta argumentov – konkurent metoda stokhasticheskoy approksimatsii” [The method of group accounting of arguments is a competitor of the stochastic approximation method], Avtomatika, No. 3, pp. 58-72.
23. Quenouille, M.H. (1949), Approximate tests of correlation in time-series, Journal Royal Statistical Society, Vol. 11, pp. 68-84.
24. Mosteller, F. and Tyuki, Dzh. (1982), “Analiz dannykh i regressiya” [Data analysis and regression], Finansy i statistika, Moscow, 239 p.
25. Interstate Standard (2012), “8.558–2009 GSI. Gosudarstvennaya poverochnaya skhema dlya sredstv izmereniy temperatury” [8.558–2009 GSI. State verification schedule for temperature measuring instruments], available at: www.docs.cntd.ru/document/1200086918.
26. Levin, S.F. (2016), “Izmeritelnaya zadacha identifikatsii funktsii pogreshnosti” [The measurement task of identifying the error function], Zakonodatelnaya i prikladnaya metrologiya, No. 4, pp. 27-33.
27. All-Union Scientific Research Institute of Metrological Service (1986), “MI 188–86 MU GSI. Sredstva izmereniy. Ustanovlenie znacheniy parametrov metodik poverki” [MI 188–86 MU GSI. Means of measurement. Establishing the values of the parameters of calibration methods], available at: https://www.expertnk.ru/docs/other/mi188-86.pdf

Reference:
﻿ Levyn, S.F. (2018), “Yzmerytelnaia zadacha kalybrovky sredstva yzmerenyi” [Measuring task calibration measurement means], Information Processing Systems, Vol. 4(155), pp. 120-127. https://doi.org/10.30748/soi.2018.155.17.