1. Science
  2. Publications
  3. Scientific Works of Kharkiv National Air Force University
  4. 1(59)'2019
  5. Assessment of actual registration zones of parameters of a nuclear explosion when creating a monotoring system for emergency situations of a military nature

Assessment of actual registration zones of parameters of a nuclear explosion when creating a monotoring system for emergency situations of a military nature

I. Cherniavskiy
Annotations languages:


Description: The monitoring system implemented in the posts of registration of parameters of a nuclear explosion must have a flexible and reliable structure, which should depend both on the scale of the actual detection zones of the required parameters and on the resistance of the recorders to the damaging factors of a nuclear explosion. The paper studies the methodological apparatus for determining the actual areas of registration of light and gamma-neutron penetrating radiation of a nuclear explosion. On the basis of the military experience of using optical detection stations, the influence of metrological conditions on the determination of the actual areas of registration of light radiation is analyzed. On the basis of taking into account the sensitivity threshold of the measuring channel and the radiation resistance threshold of the element base of the recorders, the maximum and minimum radius of the registration of parameters for the instant gamma-neutron radiation of penetrating radiation was estimated. A triangulation method for determining the distance to the center of a nuclear explosion is considered. An approach is proposed to choose the location of registration points in populated areas (cities) and to construct actual zones of optical and gamma-neutron registration of parameters.With moderate fog for nuclear explosion powers from 1 kt to 1 Mt, the radius of the optical recording zone decreases to 8-18 km. The maximum radius can range from 4.2 to 6.3 km, while the minimum radius of gamma radiation can be from 1.4 to 3.5 km from the center of a nuclear explosion. An assessment of the possibility of registering a fluence of fast neutrons shows that, depending on the type and power of a nuclear weapon, the detection radius varies from 2.2 km to 4.1 km from the center of a nuclear explosion. For small and ultra-low-power ammunition, the minimum registration radius at which reliable data on nuclear explosion parameters are recorded is about 0.5 km and 2.1 km for 10 Mt thermonuclear ammunition. Dynamic range analysis shows the same order of values for all scenarios of use of nuclear weapon. The registration zone for neutron radiation can be about 1800-3500 m, which is 1.5 times smaller than the zone for instant gamma radiation. Based on the actual zones obtained, the optimal base distances between neighboring check-points have been calculated for various implementation options of nuclear explosion parameters recorders.


Keywords: light and gamma-neutron radiation, monitoring system, nuclear explosion parameters recorde.

References

1. Levshin, V.I., Nedelin, A.V. and Sosnovskij, M.E. (1999), “O primenenii yadernogo oruzhiya dlya deeskalacii voennyh dejstvij” [On the use of nuclear weapons for the de-escalation of hostilities], Military thought, No. 3, pp. 34-37.
2. Cherniavskiy, I.Y. (2015), “Vojskovaya dozimetriya kak sistema vyyavleniya i ocenki radiacionnoj obstanovki.” [Military dosimetry as a system for detecting and assessing the radiation situation], Science and Technology of the Air Force of Ukraine, No. 4(21), pp. 126-133.
3. Cherniavskiy, I.Y., Marushenko, V.V. and Matykin, A.V. (2016), “Ocenka stepeni radiacionnogo porazheniya putyom prognozirovaniya dozovyh nagruzok za dannymi datchika boesposobnosti” [Assessment of the degree of radiation damage by predicting dose loads according to the data of the combat capability sensor], Systems of Arms and Military Equipment, No. 1(45), pp. 196-202.
4. Cherniavskiy, I.Y., Tyutyunik, V.V. and Kalugin, V.D. (2016), “Analiz uslovij dlya sozdaniya sistemy vyyavleniya i ocenki urovnya radiacionnoj bezopasnosti zhiznedeyatelnosti naseleniya pri chrezvychajnyh situaciyah voennogo haraktera” [Analysis of conditions for creating a system to identify and assess the level of radiation safety of vital activity of the population in emergency situations of a military nature], Collection of scientific works. Emergency issues. National University of Civil Defence of Ukraine, No. 23, pp. 168-185.
5. Kalugin, V.D., Tyutyunik, V.V., Chornogor, L.F. and Shevchenko, R.I. (2013), “Rozrobka naukovo-tehnichnih osnov dlya stvorennya sistemi monitoringu, poperedzhennya ta likvidaciyi nadzvichajnih situacij prirodnogo ta tehnogennogo harakteru ta zabezpechennya ekologichnoyi bezpeki” [Development of scientific and technical bases for creation of a system of monitoring, prevention and liquidation of natural and man-made emergencies and ensuring environmental safety], Information Processing Systems, No. 9(116), pp. 204-216.
6. Andronov, V.A., Divizinyuk, M.M., Kalugin, V.D. and Tyutyunik, V.V. (2016), “Naukovo-konstruktorski osnovi stvorennya kompleksnoyi sistemi monitoringu nadzvichajnih situacij v Ukrayini” [Scientific and engineering fundamentals of a comprehensive monitoring system of emergencies in Ukraine], National University of Civil Defence of Ukraine, Kharkiv, 319 p.
7. Cherniavskiy, I.Y., Grigorev, A.N., Bilyk, Z.V. and Matykin, V.B. (2016), “Primenenie kremnievyh pin detektorov dlya registracii parametrov yadernogo vzryva” [The use of silicon pіn detectors for recording the parameters of a nuclear explosion], Systems of Arms and Military Equipment , No. 4(48), pp. 61-68.
8. Cherniavskiy, I.Y., Litvinov, Y.V., Grigorev, A.N., Bilyk, Z.V., Polyanskij, M.E., Sakun, O.V. and Marushenko, V.V. (2017), “Viznachennya napryamku na impulsne gamma-dzherelo z vikoristannyam sferichnogo poglinacha” [Determination of the direction of the impulse gamma source using a spherical absorber], Bulletin of the NTU "KhPI". Collection of scientific works. Series Power and conversion technology, No. 4(1226), pp. 89-94.
9. Cherniavskiy, I.Y., Litvinov, Y.V., Grigorev, A.N., Bilyk, Z.V., Polyanskij, M.E., Sakun, O.V. and Marushenko, V.V. (2017), “Deyaki aspekti stvorennya priladu viznachennya napryamku na tochkovi dzherela gamma-viprominyuvannya” [Some aspects of creating a device for determining the direction of point sources of gamma radiation], Bulletin of the NTU "KhPI". Collection of scientific works. Series Power and conversion technology, No. 4(1226), pp. 82-89.
10. Cherniavskiy, I.Y., Tyutyunik, V.V., Kalugin, V.D., Bilyk, Z.V. and Matykin, V.B. (2018), “Ispolzovanie rezultatov pri razrabotke teoreticheskih i metodologicheskih osnov postroeniya sistemy radiacionnogo monitoringa chrezvychajnyh situacij voennogo haraktera” [Using the results in the development of theoretical and methodological foundations for building a system of radiation monitoring of emergency situations of a military nature], Systems of Control, Navigation and Communication. Collection of scientific works of Poltava NTU named after Y. Kondratyuk, No. 1(47), pp. 176-184.
11. Dneprovskij, A.P. (1983), “Oruzhie massovogo porazheniya i zashita aviacionnyh podrazdelenij” [Weapons of mass destruction and protection of aviation units], Zhukovsky Air Force Engineering Academy, Moscow, 358 p.
12. Shkirenko, A.K. (1990), “Svetotehnicheskaya stanciya zasechki yadernyh vzryvov K-611-0” [Lighting Station of detection of nuclear explosion K-611-0], Sevastopol Higher Naval Engineering School, Sevastopol, 146 p.
13. Ministry of Defense of USSR (1967), “Boevye svojstva yadernogo oruzhiya” [The combat properties of nuclear weapons], Military publishing house, Moscow, 624 p.
14. Abramov, A.I., Kazanskij, Y.A. and Matusevich, E.S. (1970), “Osnovy eksperimentalnyh metodov yadernoj fiziki” [Fundamentals of experimental methods in nuclear physics], Atomizdat, Moscow, 560 p.
15. Tarasenko, Y.N. (2013), “Ionizatsionnye metody dozimetrii vysokointensivnogo ioniziruyushhego izlucheniya” [Ionization methods for dosimetry of high-intensity ionizing radiation], Technosphere, Moscow, 264 p.
16. Davydov, L.N., Zaharchenko, A.A. and Kutnij, D.V. (2005), “Radiacionnaya stojkost poluprovodnikovyh detektorov korpuskulyarnogo i gamma-izlucheniya” [Radiation resistance of semiconductor detectors of corpuscular and gamma radiation], Bulletin of Kharkiv University, Physical series “Kernels, particles, fields”, No. 657, pp. 3-21.
17. Myrova, L.O. and Chepizhenko, A.Z. (1988), “Obespechenie stojkosti apparatury svyazi k ioniziruyushim i elektromagnitnym izlucheniyam” [Ensuring the durability of communication equipment to ionizing and electromagnetic radiation], Radio and communication, Moscow, 296 p.
18. Tapero, K.I., Ulimov, V.N. and Chlenov, A.M. (2012), “Radiacionnye effekty v kremnievyh integralnyh shemah kosmicheskogo primeneniya” [Radiation effects in silicon integrated circuits for space applications], Binomial. Knowledge Lab, Moscow, 304 p.

Reference:
 Cherniavskyi, Y.Yu. (2019), “Otsenka faktycheskykh zon rehystratsyy parametrov yadernoho vzrыva pry sozdanyy systemы monytorynha chrezvыchainыkh sytuatsyi voennoho kharaktera” [Assessment of actual registration zones of parameters of a nuclear explosion when creating a monotoring system for emergency situations of a military nature], Scientific Works of Kharkiv National Air Force University, Vol. 1(59), pp. 104-110. https://doi.org/10.30748/zhups.2019.59.15.