1. Science
  2. Видання
  3. Наука і техніка Повітряних Сил Збройних Сил України
  4. 4(37)'2019
  5. Research of criteria of modified non-symmetric crypto-code construction of McEliece on extended elliptic codes

Research of criteria of modified non-symmetric crypto-code construction of McEliece on extended elliptic codes

 S. Yevseiev
UDK 4.942
Article language: english
Annotations languages:


Annotation: The computing development in the post-quantum cryptography era puts forward new requirements for crypto-graphic mechanisms for providing basic security services. The advent of a full-scale quantum computer casts doubt on the cryptographic strength of cryptosystems based on symmetric cryptography and public-key cryptography. One of the promising areas in the opinion of US NIST experts is the use of crypto-code constructions (crypto-code schemes or code-theoretic schemes) by McEliece or Niederreiter. The construction allows one integrated mecha-nism to provide the basic requirements for cryptosystems – cryptographic stability, speed of crypto conversion and in addition – reliability based on the use of noise-resistant coding. However, their use is difficult due to the large volume of power of the alphabet, and the possibility of hacking based on Sidelnikov’s attack. The paper proposes to use non-cyclic noise-resistant codes on elliptic curves in a modified McEliece cryptosystem that are not susceptible to Sidelnikov’s attack. The main criteria for constructing a modified crypto-code based on the McEliece scheme on elongated elliptic codes are investigated. It is proposed to reduce the energy intensity in the proposed crypto code design by reducing the power of the Galois field while ensuring the level of cryptographic stability of the modified cryptosystem as a whole with its software implementation. To reduce the field power, it is proposed to use modified elliptical codes, which allows to reduce the field power by 2 times. A comparative assessment of the performance of cryptocurrencies in the proposed design of the cryptosystem is carried out. The results of statistical stability studies based on the NIST STS 822 package confirm the cryptographic strength of the proposed cryptosystem on modified elongated elliptical codes.


Keywords: Asymmetric McEliece crypto-code system, Crypto-code construction on algebro-geometric codes, Modified (extended) elliptic codes, Confidentiality, Integrity.

References

1. Reporton Post-Quantum Cryptography [Electronic resource]. –Availableat: http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR. 8105.pdf.
2. The Information Technology Laboratory. Security requirements for cryptographic modules [Electronic resource]. –Available at: https://csrc.nist.gov/publications/fips/fips 140-2/fips1402.pdf (accessed 1 December 2017).
3. Грищук Р.В. Основи кібербезпеки / Р.В. Грищук, Ю.Г. Даник. – Житомир: ЖНАЕУ, 2016. – 636 с.
4. Hryshchuk R. Construction methodology of information security system of banking information in automated bankingsystems: monograph / R. Hryshchuk, S. Yevseiev, A. Shmatko. – Vienna: PremierPublishing s.r.o. – 2018. – 284 p. https://doi.org/0.29013/R.HRYSHCHUK_S.YEVSEIEV_A.SHMATKO.CMISSBIABS.284.2018.
5. Hang Dinh. McEliece and Niederreiter Cryptosystems that Resist Quantum Fourier Sampling Attacks [Electronic re-source] / Hang Dinh, Cristopher Moore, Alexander Russell. – Available at: https://dl.acm.org/citation.cfm?id=2033093 (accessed 1 September 2018).
6. Enhanced public key security for the McEliece cryptosystem [Electronic resource] / Marco Baldi, Marco Bianchi, FrancoChiaraluce, Joachim Rosenthal, Davide Schipani. – Available at: https://arxiv.org/abs/1108.2462 (accessed 1 September 2018).
7. Guangzhi Zhang. Secure error-correcting (SEC) schemes for network coding through McEliece cryptosystem [Electronicresource] / Guangzhi Zhang, Shaobin Cai. – Available at: https://link.springer.com/article/10.1007/s10586-017-1294-5.
8. Guangzhi Zhang. Universal secure error-correcting (SEC) schemes for network coding via McEliece cryptosystem basedon QC-LDPC codes [Electronic resource] / Guangzhi Zhang, Shaobin Cai. – Available at: https://link.springer.com/article/10.1007/s10586-017-1354-x.
9. A Side-Channel Assisted Cryptanalytic Attack Against QcBits [Electronic resource] / M'elissa Rossi, Mike Hamburg,Michael Hutter, Mark E. Marson. – Available at: https://link.springer.com/chapter/10.1007/978-3-319-66787-4_1 (accessed 1 September 2019).
10.Дудикевич В.Б. Крипто-кодовий захист інформації з недвійковим рівноваговим кодуванням / В.Б. Дудикевич,О.О. Кузнєцов, Б.П. Томашевський // Сучасний захист інформації. – 2010. – № 2. – С. 14-23.
11.Дудикевич В.Б. Метод недвійкового рівновагового кодування / В.Б. Дудикевич, О.О. Кузнєцов,Б.П. Томашевський // Сучасний захист інформації. – 2010. – № 3. – С. 57-68.
12.Морозов Кирилл. О безоговорочно обязательных схемах обязательств на основе кода [Электронный ресурс] /Кирилл Морозов, Партха Саратхи Рой, Куичи Сакурай. – Режим доступа: https://dl.acm.org/citation.cfm?id =3022327&dl=ACM&coll=DL (accessed 1 September 2019).
13.Marquez-CorbellaIrene. Using Reed-Solomon codes in the (U | U + V) construction and an application to cryptogra-phy / Irene Marquez-Corbella, Jean-Pierre Tillich // IEEE International Symposium on Information. https://doi.org/10.1109/ISIT.2016.7541435.
14.ASide-Channel Assisted Cryptanalytic Attack Against QcBits [Electronic resource] / M'elissa Rossi, Mike Hamburg,Michael Hutter, Mark E. Marson. – Available at: https://link.springer.com/chapter/10.1007/978-3-319-66787-4_1 (accessed 1 September 2019).
15.Almeida Paulo. A new class of convolutional codes and its use in the McEliece Cryptosystem. [Electronic resource] /Paulo Almeida, Diego Napp. –Availableat: https://www.researchgate.net/publica-tion/324745076_A_new_class_of_convolutional_codes_and_its_use_in_the_McEliece_Cryptosystem (accessed 1 September 2019).
16.Kapshikar Upendra. A Quantum-Secure Niederreiter Cryptosystem using Quasi-Cyclic Codes [Electronic resource] /Upendra Kapshikar, Ayan Mahalanobis. – Available at: https://www.researchgate.net/ publication/327660637_A_Quantum-Secure_Niederreiter_ Cryptosystem_using_Quasi-Cyclic_Codes (accessed 1 September 2019).
17.Joo Yeon Cho. A McEliece-Based Key Exchange Protocol for Optical Communication Systems [Electronic resource] /Joo Yeon Cho, Helmut Griesser, Danish Rafique. – Available at: https://link.springer.com/chapter/10.1007%2F978-3-319-59265-7_8 (accessed 1 September 2019).
18.Евсеев С. Анализ программной реализации прямого и обратного преобразования по методу недвоичного рав-новесного кодирования / С. Евсеев, Х. Рзаев, А. Цыганенко // Безпека інформації. – 2016. – Том 22, № 2. – С. 196-203.
19.Сидельников В.М. Криптография и теория кодирования / В.М. Сидельников // Материалы конференции“Московский университет и развитие криптографии в России”. – M.: МГУ, 2002. – С. 1-22.
20.RukhinA. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications/ A. Rukhin, J. Soto. – NIST Special Publication. – 2000.

Information about the authors of publication:
Reference:
Yevseiev, S.P. (2019), Research of criteria of modified non-symmetric crypto-code construction of McEliece on extended elliptic codes, Science and Technology of the Air Force of Ukraine, No. 4(37), pp. 80-92. https://doi.org/10.30748/nitps.2019.37.12.

Whoops, looks like something went wrong.